The effect of divalent cations on neuronal nitric oxide synthase activity.

نویسندگان

  • John Weaver
  • Supatra Porasuphatana
  • Pei Tsai
  • Guan-Liang Cao
  • Theodore A Budzichowski
  • Linda J Roman
  • Gerald M Rosen
چکیده

Neuronal nitric oxide synthase (NOS I) is a Ca(2+)/calmodulin-binding enzyme that generates nitric oxide (NO*) and L-citrulline from the oxidation of L-arginine, and superoxide (O(2)*(-)) from the one-electron reduction of oxygen (O(2)). Nitric oxide in particular has been implicated in many physiological processes, including vasodilator tone, hypertension, and the development and properties of neuronal function. Unlike Ca(2+), which is tightly regulated in the cell, many other divalent cations are unfettered and can compete for the four Ca(2+) binding sites on calmodulin. The results presented in this article survey the effects of various divalent metal ions on NOS I-mediated catalysis. As in the case of Ca(2+), we demonstrate that Ni(2+), Ba(2+), and Mn(2+) can activate NOS I to metabolize L-arginine to L-citrulline and NO*, and afford O(2)*(-) in the absence of L-arginine. In contrast, Cd(2+) did not activate NOS I to produce either NO* or O(2)*(-), and the combination of Ca(2+) and either Cd(2+), Ni(2+), or Mn(2+) inhibited enzyme activity. These interactions may initiate cellular toxicity by negatively affecting NOS I activity through production of NO*, O(2)*(-) and products derived from these free radicals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The activation of neuronal nitric-oxide synthase by various divalent cations.

Nitric-oxide synthase (NOS; EC 1.14.13.39) catalyzes the oxidation of L-arginine to nitric oxide (NO(.)) and L-citrulline via the intermediate N(omega)-hydroxy-L-arginine. Of the three distinct isoforms of NOS that have been characterized, the constitutive neuronal NOS (NOS I) generates NO(.) associated with long-term potentiation (LTP) and early brain development. All of the NOS isoforms conta...

متن کامل

Role of matrix metalloproteinase II on analgesic effect of nitric oxide inhibition in rat

Abstract Introduction: Matrix metalloproteinase 2 is one of the inflammatory mediators that is involved in nociceptive processing and its production is regulated by many inflammatory factors such as nitric oxide. We studied the role of MMP-2 on the analgesic effects of nNOS inhibitor. Methods: Considering that nitric oxide has many roles in pain processing, we studied the CSF levels of MMP-2 ...

متن کامل

P2: The Role of Neuronal Nitric Oxide Synthase on the Anti-Seizure Effects of 5-HT1A Receptors in Perforant Pathway Kindling Model in Rat

Neuronal nitric oxide synthase (nNOS) plays a role in synaptic potentiation and kindling process.The relationship between nNOS and 5-HT1A receptors also nearly has been specified. In this research,we investigate the role of nNOS on the anticonvulsant effect of 5-HT1A receptors. 24 male (280 ± 30 g) were randomly assigned to four groups (vehicle,NI,Way 100635 and NI + Way100635) (n = 6). ...

متن کامل

Comparison of inducible nitric oxide synthase activity in pancreatic islets of young and aged rats

Objective(s):Some pathologic situations such as diabetes and metabolic syndrome are associated with alternation in nitric oxide level. Incidence of these condition increases with aging. On the other hand, insulin secretion is modulated by nitric oxide, and nitric oxide synthase (NOS) activity is also altered in diabetes. In this study, modification in the enzyme activity associated with aging a...

متن کامل

Effect of nitric oxide on the attenuation of acquisition of morphine-induced conditioned place preference by the essential oil from Cuminum cyminum L. fruit in mice

Introduction: Nitric oxide (NO) is a neuronal messenger molecule in the central nervous system, which is generated from L-arginine by nitric oxide synthase (NOS) and involves in many important opioid-induced effects. Our previous studies revealed that Cuminum cyminum interestingly reduces morphine sensitization, tolerance and dependency in male mice. Therefore, in the present study, the effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 81 2  شماره 

صفحات  -

تاریخ انتشار 2004